

Representation of Groups

Mamoru Tanaka

mamoru.tanaka@wpi-aimr.tohoku.ac.jp AIMR, Tohoku University, Japan

1 Purpose

In physics, group is an expression of the symmetry of a structure. Such groups are represented as a subgroup of the unitary group which is compatible with Hamiltonian on a Hilbert space. Under the represented group translation, the energy of the wave functions (in the Hilbert space) are invariant. We investigate properties of other representations of groups.

2 Group (Symmetry of Structure)

Mathematically, a group is a set G with product $G \times G \to G$; $(g_1, g_2) \mapsto g_1 g_2$ satisfying

- (i) $g_1(g_2g_3) = (g_1g_2)g_3$ for all $g_1, g_2, g_3 \in G$;
- (ii) there is $e \in G$ such that ge = eg = g for all $g \in G$;

(iii) for any $g \in G$ there is $g^{-1} \in G$ such that $gg^{-1} = e$.

- The following are well-known examples of groups in physics.
 - Rotation group : the symmetry of a sphere
 - Space group : the symmetry of a crystal configuration
 - Poincare group : the symmetry of a Minkowski spacetime
 - $\{+1, -1\}$: the symmetry under a time reversal
 - Gauge group : the symmetry of a gauge
 - Unitary group : the symmetry of a Hilbert space

A group is said to be *finitely generated* if there is a finite set $S \subset G$ such that any element of G is a product of elements in S. For example, $\{+1, -1\}$ and space groups are finitely generated.

A map π from a group G to a group G' is called a *homomorphism* if $\pi(g_1g_2) = \pi(g_1)\pi(g_2)$ for all $g_1, g_2 \in G$.

3 Representation

Let M be a compact manifold. For example, M is a square or a cube with periodic boundary condition.

A Hilbelt space is a function space on M defined as

$$H = L^2(M) := \{f: M \to \mathbb{C} \mid \int_M |f(x)|^2 d\mu(x) < \infty\}$$

with the inner product and the norm for $f_1, f_2, f \in H$

$$\langle f_1, f_2 \rangle := \int_M f_1(x) \overline{f_2(x)} d\mu(x), \quad \|f\|_2 := \left(\int_M |f(x)|^2 d\mu(x) \right)^{1/2}.$$

The unitary group $\mathcal{U}(H)$ of the Hilbert space H is the group of all invertible linear operators $U: H \to H$ such that

$$\langle Uf_1, Uf_2 \rangle = \langle f_1, f_2 \rangle$$

for all $f_1, f_2 \in H$, this is equivalent to

$$||Uf||_2 = ||f||_2$$

for all $f \in H$. A unitary representation of a group G is a homomorphism $\pi : G \to \mathcal{U}(H)$. This means G is represented as $\pi(G)$ in $\mathcal{U}(H)$, and $\pi(G)$ -translation don't change the "energy" $||f||_2$ of a function $f \in H = L^2(M)$.

Let $\Phi : [0, \infty) \to [0, \infty)$ be a convex non-negative function with $\Phi(0) = 0, \ \Phi(t) > 0$ for t > 0. The *Orlicz space* is a function space on M defined as

$$L^{\Phi}(M) = \{f: M \to \mathbb{R} \mid \int_{M} \Phi\left(\frac{|f(x)|}{b}\right) d\mu(x) < \infty \text{ for some } b > 0\}$$

with the norm

$$||f||_{\Phi} := \inf\{b > 0 \mid \int_{M} \Phi\left(\frac{|f(x)|}{b}\right) d\mu(x) \le 1\}.$$

For example, if $\Phi_2(t) = t^2$, then $L^{\Phi_2}(M) = L^2(M)$ and $||f||_2 = ||f||_{\Phi_2}$. For $1 \le p < \infty$, if $\Phi_p(t) = t^p$, then $L^{\Phi_p}(M)$ is written as $L^p(M)$ and satisfies

$$||f||_{\Phi_p} = ||f||_p := \left(\int_M |f(x)|^p d\mu(x)\right)^{1/p}.$$

The unit circles of 2-dimensional Orlicz spaces for $\Phi(t)=t,t^{3/2},$ $t^2,\,t^3$ are

For $B = L^{\Phi}(M)$, the *linear isometric group* O(B) is the group of all invertible linear operators $O: B \to B$ such that

$$\|Of\|_{\Phi} = \|f\|_{\Phi}$$

for all $f \in B$. A linear isometric representation of a group G is a homomorphism $\pi : G \to O(B)$. This means G is represented as $\pi(G)$ in O(B), and $\pi(G)$ -translation don't change the " Φ -energy" $\|f\|_{\Phi}$ of a function $f \in B$.

4 Property (T_B)

Let G be a finitely generated group with the generating set $S, B = L^{\Phi}(M)$, and π a linear isometric representation of G. We denote by $B^{\pi(G)}$ the set of the invariant functions, i.e., functions $f \in B$ such that $\pi(g)f = f$ for all $g \in G$. Then we can define the linear isometric representation $\pi' : G \to O(B/B^{\pi(G)})$, which doesn't have invariant functions. We say that π' almost has invariant vectors if there is a sequence $f_n \in B/B^{\pi(G)}$ (n = 1, 2, ...) such that

$$\lim_{n \to \infty} \max_{g \in S} \|\pi'(g)f_n - f_n\|_{B/B^{\pi(G)}} = 0.$$

The group G is said to have property (T_B) if for any linear isometric representation $\pi: G \to O(B)$, the induced representation $\pi': G \to O(B/B^{\pi(G)})$ does not almost have invariant vectors. This means that if $f \in B$ is "orthogonal" to every invariant functions, then it is not even almost invariant.

Theorem ([BFGM07]). Let G be a finitely generated group and $1 . Then G has property <math>(T_{L^2(M)})$ if and only if it has property $(T_{L^p(M)})$.

An feature of $L^p(M)$ (1 is uniform convexity and uniform smoothness. So we consider uniformly convex and uniformly smooth Orlicz spaces.

5 Result

Theorem ([T]). Let G be a finitely generated group and $L^{\Phi}(M)$ a uniformly convex and uniformly smooth Orlicz space. Then G has property $(T_{L^2(M)})$ if and only if it has property $(T_{L^{\Phi}(M)})$.

Remark. Uniform convexity and uniform smoothness of $L^{\Phi}(M)$ are written in terms of Φ .

References

- [BFGM07] U. Bader, A. Furman, T. Gelander, N. Monod, Acta Math. 2007,
- [T] M. Tanaka, in preparation.